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ABSTRACT

I consider task systems modeled by directed acyclic graphs in which nodes represent tasks

and arcs express precedence constraints, and each task can be computed by a processor in one

unit of time. It is known that if there are only two processors or if the graph is a tree. then

*there are polynomial time algorithms for scheduling the graph in minimum time, but in general

- the minimum time scheduling prcblemn is NP-complete. The communication cost of a schedule is

the number of pairs (p ..v) such that processor p does not compute task x but computes an

Nimmediate successor of x ',that is, the result of x must be communicated to p . I consider the

rnrot'em of finding schedules that minimize finishing time and among those, finding schedules

that minimize communication. I prove that the problem with two processors on an .rbitrarv

graph is NP-comple !e "'he prooiem ., ithi a bitrarilv many processors on a tree is also- NP-

-cor-1te. Thie case of -Ao processcrs on a tree is open in -eneral. but I establish tight hounds

fr t'-.vo processors on, the indirecied complete ternar'. tree of height k :for minimum irne. com-

muL;7!,at:on k -og'k -r-3 s achie\.able, and communication k -log'k +1 is necessary'.
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CH1APTER 1

INTRODUCFION/LITERATURE REVIEW

1.1 Introduction

The advent of multiprocessor networks has introduced potential computing capabilities

pre, iously undreamed of. Before we can make full use of these capabilities. howxe~er. we have

much to learn about the nature of parallel computing. It is well known that although in the

ideal sit uation s\ stem throughput increases linearly with the number of processors. in reality

thisdoes not occur In fact. often after thie first few processors. adding additional processors to a

s'.stem may decrease system throu, ghput. The reason 'or this, according to Chu et a]. (Chu

)I ()]. is interprocessor communication. users tend not to schedule the tasks among processors in

such a wav as to minimize final ccmpletion time is determined by actual task Computation time

and communication bet\keen processors.

In this thesis. I stud'y the difficulty of scheduling rrultitask jobs on mutiprocessor systems

p to minimite completion time and communication cost .A multitask job is represented by a

i:rected ac%,lic graph (dag) in which each node represents a Lask. nd an arc rem node i' to

node u means that rode ' ,ust be comuted betore node u and the result of con.-utation of v

.must be know n ibv tne processor computing u . F obtain a schedule that minimizes both

pro, ess<ng comple::on time and communication cost (defined a the number of times that an.

P .:cessur must pa,-s the re ,ilt of an'. of its corn putations t," another processor so that the secono

c:' ri:rute .: task) is an \P *Iard pr,- lem I tta\ e -h, .n "hi' to be 'rue !or ar'! rar--. ra-hs,

on ?.,' rt k:c-,''.. a;:- h. hu, ('otf2.,1n ond (;rahnm ;1,- e .Je :'sed 1', 0emial tee 1 c~ r" t.

th- 'r, .er nen c, mm unica..o.n I ,:t .i J-.er. *.f n 92]. Fur'.erm re. I sn,, the

Tr cessor - m u' :.- a 7ra n :te. " a 1. 'r-? -ern...ns a, r r, ie -7-)- . er-

• ....- --- .-.".-.._.'.. .:-* .. ,:. ": "



Iandi lower hounds on communication for minimum time schedules for complete binar\ and

ternar% trees. I determine the Iow.er bound for ternary trees by showing a new partition result

for complete ternary trees using a combinatorial method that may be of independent interest. -

1.2 Scheduling

Scheduling and task distribution (among processors) are two problems that have been

stutfie !fairly extensivelv in the last ten \'ears. although much of the \%ork on the two problems

has been disjoint. Section 1.2 addresses scheduling literature. In Section 1.3. 1 review some of

the research in communication minimization. In studying task scheduling, we view the ov erall

jo)as a directed acyc lic graph. whiere each node in the graph represents one task. or part of the

,)\.erallI job) to be completed. Thus. whei' I use the term no'de. I will mean the task represented

b\ that node. Arcs in the graph represent precedence constraints. i.e.. (u v'. ) is in the graph if

task. U must he Computed before computation ofI task - can be started. Thus. the graph .spec ifies

* .a partial order on the tasks. In the general (unit time execution) scheduling problem as defined

U.llman [lUilman 19751 wve are given a set S of tasks, a part~al order I on S expressing

precedence constraints, a number k of identical processors. and a time limit I The question is

Ahether t here is a total f unct ion f is { 1, 2.t -1i such that

1. If u -_ . then f (u ) < fUv u .% E S.

2. ~i it < i there are at most k values of v (v E S forAxhich (v (~ i .

Paraphrased. the problem is to determine vhether the tasKs can be sceuled on the k

processors , ithin time t such that for any twko tasks u and v ;n S . if u v .then ui is

J ,heduled before v . andl at each instant. each proicessor is assi(_ned to at most one task . L man

sthat this uit timre precedence-con~.trained schedUliTIg prv-Hem is NP-complete.

F~urthermore. he goes on to show that t,,: o-processor scheduling w; ith x ve:ghtv of I andi 2. 'hat 1s.

*he pron~ern stated abo'.e extentied to alloA tasks either one or two- umis of time to corriute. :

\P-Corlete.
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l'lis last result is moderately surprising since Coffman and Graham construct a po],, nomial

mle algorithm i or t'.o processor scheduling if all tasks hae equal execution times [(offman
-Id

P1)72] The algorithm for computing the schedule consists of two pa, ts. First the tasks are all

Saheled w ith positive integers in such a way that v Li E S. v v E S such that u E v. the label of

""is greater than 'he label of v The second part of the algorithm is processor assignment.

\Vhcne. e: a processor becomes a',. ailable. it computes the task u \, ith highest label such that

11 ere i- no task v E u that has not vet been computed. Ullman's results show' that simply

j .i ing some jobs to require computation time of 2 makes the problem significantly more

\ore recent l. (,abo%% has de% eloped an almost linear time algorithm for unit execution

time tvo processor scheduling [Gabow 19S2].

It- -.\e require the graph representing the partial ordering for the unit time execution

schedul.ng probiem to he a tree. xe can again design a pol\ nomial time algorithm for the
%'

problem regardless of the number k of processors [flu 1961]. llu goies an algorithm for

cheduling indirected trees. i.e.. trees T x iii root i such that for all nodes z in 7". u _- v . in

l!ir'ar t'ime. I nave not hcen able to de'. ise -; pol,-time al-orith for the ame problem :aking

, ',,mmunication costs nto account. like the (ofrman-;raham t'L,,o processor scheduiing
.-.

aigorithm , ls aigorithm reiuires labeling all nodes ol the grzh ,xith integers. In th:s .ase.

-ach node i s given the label i(u ' + 1 ', I-ere d tL is the length of The path from U -o The

1,ot. l-r the aclual shedule. define in a-uahle node W, :t an; no1e a szuch that all of Z. s

predece~s ors ha'. e "en compute-: then at eaLh time init co,lpute "h. 7 a', aila-ie nodes 1 i,

.. .- : i .,. n e .-e " c" ec:s; ris a- ar 1 ':trar'. I e ' .. . n '',e' ;rt'

'tie i. .. ai'e ,

IPI
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1.3 Communication Minimization

Whereas scheduling prohleni :,)ncern determining at w hat time each of se,,eral or many

ia~ks should he computed. commlUnication minimization problemis concern processor allocation.

\ILIL1 01 the pre,- wus ,work in this, Ifield does, not consider precedence constraints among the

ar. irous, task4s at all. but aimis priniril% at minimizing computation cost. The system has tw.\o

%~ rd of nonneoati~e contingent costs: a pr ''cc ing c('si for each p-wir (Pu ) \wkhereP is a

Pro, eor and ai a task in the sv-steni. and a cmiviunCazonf cost for each pair (u .v ) \. hiere u and

v are tasks. 'Fie processing cost is incurred \x lien task u is compruted on processor P, w hile the

i ormminic:±tion c:ost is incurred wh len task u and v are computed on different processors. If the r

o nmmunicition cost for a oi',en pair (u x' ) is infinite, then node> ?. and v must be computed by

*tile same processor. Similarly, if the processing cost for a pair (P u ) is infinite, then node u

*cannot b~e processed on processor P. Toial intLr-poces~or- cOMniunication cost is the sum of all

c:ommunication costs incurred in a giv en schedule. The computation cost is defined as the sum of

the processing cost for each task on the processor to which it is assigned. and total intLcr-
W

processor communication cost.

CThu et al. present a numbher of strate .ies for the ,ask allocation probl)em [(Chu 19,S01 The

! i rst <trateg % takes, a netw ork flowk ipproac:h to ininim i/in otald cost (as dettned abo\ e) in a two

* ~ ce~~r stemn [Stone 1,'-7) In this met.hod, the entire job i,, represented as a graph .kith each

n,,(e representing a task to be performed. The graph has a,"ditional nodes P and Q . one for each

ne r.'esor\ 1nlie thle directed raisused lor thle cheduhin- problem, in this graph. the

* :~'~ire ultlir-e~ tek ind .'-,whted. [or e-.er% "air of tas ks u and v .the graph has an edge (u .

* ~~ii .i -k cihz la u the urd 'mui'ction cos, hen u and v are :om nujted by% dillerent

LIvs. uT-herniore 'r- -aclh task ai 'ne cr.:ph has edgek P ano u itb h ict

~ r:ed~~ow tie (P 'a has w gt a! 'xl po~errxessingo '.1o u Sim11dlar':, edgeU

i2 La !as xer~nt 'uiito ircoii otP lnmnt(tai csi as, e::n edt abox e s a
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q minimum cut problem I or this orirh.

Lnfortunaitek . this a rrroach is, quite limited since it handles only t oprocessor syvstems.

The nest approach presented by (Chu et al. [Ch i91'S)]. an integer programnming approach, is

q .ich nmore Iles ible anti c-s pandaie In this miethod. cornmunication costs bet,.veen all pairs ol

ta~ks are repres ented in a ,~ol iure mat rix, andJ thle Objecise 1 Unction is *,he sumn of indiv idual

* pr~es~n~costs andi c(rn-i:nunica,,in costs. This method is more flexible by. \ irtue of the fact

ilat it alw- ; o~ more t han 1 vo rrocess ors . andi ot her l im its can be program med into the systemn

b!ri \ addini: Iomstraint eqUations for each. Of course, the major disad\ antage of this

a,-proat.h sI-at I he tenera]I :nle~er prograrmmn problem is %iwell knos- n to he NP-hard [Gare:.

Lo. in. her doctoral thesis [Lo 19831, also addresses the problem of' minim;?.ing

c.1mminiCation -,ost in a multirocessor svystemn She presents a heuristic algorithm. Algorithm

A for Obtaining a near-optimal processor'assignment for systems -1 ith more than two :.

'rssrsA!-or;!hm A. consists of three parts: Iterative. Lump. and G;reedy. Iterative is a

:e~raloa~ono;the nelt'x (rk flo'., approach sugg,_ested earlier to -'i' e an. opt mal assivnment for

* I' the :ak.I _um 7 determnines, a lo',x er hound on tlhe total cost H, a a v \ <ut here k

',h ol :~n.e prcsos I- the re-nainin" Lunas silned task,, and based onthis number

dco-eher t;,, um ai M o he tasks in a group assined to one 7rocessor or to Ic (Greed';

"'m lete the Vsinn.n (jreed,, clusters, :hose task )et',,%een xhich coinmn.ncatio. Ccot ar

jr~"~n as~ns t ik in a snle clustIer to a si , rocessor

Nn e r rhe i, dnran es s'St ed th-i s f ar ,dd res; he o uest i n ohx e r"I cmpretmo n tIm e.

~ce~ n t~ r . ual or.'s I tier rl-,ce!C' .;re Ite. 11ed as * 71'. .d i

7~~~~- d7Ie.T C;1

te-' a. I:e- .n'r: Im ..;, i:- ir-:: *in,2 a.e .vk~a orn t mnrcsr izn:>

<~.5* I 10-otaFC;:'ic.. 'r~iti >0~~IC 2a. i 1!~r70:n
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issue, hoe\ er [Lo l,S3]. She points out that it is .,erv difficult to schedule n tasks on k

processors (t and k positi,.e integers) ;n a balanced way. I ler model for scheduling to minimize
".1I

communication and completion time includes a set S of it (disjoint) tasks each with finite

execution time. k identical processors,. and contingent communication costs c,,, for e\er- pair of

tasks (u v).u and v E S . The cost of a processor allocation A is defined to be the maximum

o, er all processors P of the sum )I processing costs of all tasks computed by P and the '

communication costs incurred b\ tasks computed b\ P. The problem. then. is to de, ise an

allocation to minimize this maximum oer all possible processor allocations for the gi\en tasks

(i.e.. it is a minimax problem). Io points out that een without the contingent communication

cost constraint, the problem is NP-hard. The addition of communication costs produces a more

difficult problem. If. however. exet ,ition times I )r all jobs are identically equal to a constant t

and similarlb, if the contingent communication cost between every pair of tasks is equal to a

constant c then if - > . an optimal schedule is determined by assigning the tasks in aC rz.

round robin manner: if instead - . then an optimal assignment consists of computing all
c n

. tasks .i a single processor. Logoes on to gi-e some heuristic results for cases when computation

. times and contingent communication costs are not as xell behaved. %*

1.4 Other Related Communication Results

Papadimitriou and Sipser investigate communication from a slightly different angle

[Papad:mitriou 19S4a]. They in'estigate a two processor system that uses 2n input bits di'.ided

bet'.een the processors such that each prcessor has an z -bit input string. They describe a

conmunimation complexity hierarchv based on the number of bits that must be passed between

the t, o rrocessors in order to solve a problem (expressed in terms of !anguage recognition) that

is a !unction of all hi bits. COM.M( I a ') is defined :o be the set of !anguages that can be

recognized by passng exactly in 1 bits between the *,)wo processors. 7e,gardless of the original* "
f% % %V%. % .%. .. V .,. , ... ..... ....... "•. . . . . .. *

,,. ,, a ), -, -';.,'..-...'.::-:..i(-..;j ;...?;;: % .-. _ .... -;_:::. .... . . . . .. . . . . . . . ...... . ... ".'.""."..-'.. . . . . . . . . ***- *' ,....
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- partition of the 2n biLts ', et een them. Papadimitriou and Sipser go on to esabhish several act . %

about the communication complexit\ hierarchv that parallel the classif tLime-space hierarchy.

For example. CM\I\(rz -I) ; 0. and N(')\l\f(f (n )) ( COA (2. '

Papadimitr!ou and ''sitsiklis address the problem ol dividing a job'., inputs bet xeen two

processors assigned to .ompute it in order to minimize communication necessar\ bet'een the

pr,,cescrs in order to compiete the jot. This is an \P-hard proilem [Papadimitriou 198 2].
".

Comparing this result \ ith earlier ores. \),e see that not ink is it difficult to minimize

. communication necessar\ betxeen processors .lien contingent t. mmunication betwveen tasks is
',-a

kno'. n. but minimizing those contingent costs is also difficult.

1.5 Other Related Work ,.

Thus far. ,we have considered time scheduling and processor allocat:on entirel, disjointV I

Irom all other issues, although Chu et al. do point out that the hinear programming approach to

m:nimizing 0erail cost considering communication costs is expandable [Chu 19 0]. (;arev and

. Johnson consider a similar issue in time scheduling. i.e.. the problem of scheduling to minimize

Scomnrleton time %, hen there are additional resource constrain.s. In this model ,. e are ;i\en a set

N -1- ta ks and a number of processors. Each u E S; has an associated c:)mnletion time c,

, and te.ch of r resources, a nonnegazve resource r-'quirement R fu ). The :;i.s are related b.

a Fartia' ,.rder _ as in scheduling problem- d.scussed earlier Furthermore. k e are ?oven a time

-imit : -ni an ,nieger b for e;-ch resource R I i r . The -Tre-sent the amount I the

l.ated re-,,u .e avaIlable in the s. stem. The problem i o a'0Le. e J -. hedUle de!ineC as i.

,nctin w . - 1..; -I '., ith the .ollov, n 1stipulaions:
. 5

"- .e, 7 ~ e-, e -et a - LI u :tha L k.' Z,

.F°
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J Then

v i R, u b

Since the general scheduling problem is NP-complete. so is this limited resource scheduling

* problem. (iarev and Johnson pro\.e that it is still NP-complete when k = 2. c (u )c (v. V

- u xv E S andI 7 defines a forest wxhenever r > 0. In contrast, if k = 2. c is a constant

function, and I: is empty, then . r > 0) there is a polynomial time algorithm to schedule the

* ~tasks. If k = 3. then the problem again becomes NlP-complete. even for ?- I

d 1.6 Scheduling and Commiunication Minimization

T[he problem of combining finding a minimal time schedule %kith a minimal communication

processor allocation is. of course. at least as difficult as either of its parts. and is a combination of

som ofC these re\. ious probhlems. Also, to speak, of "minimizing, time and commIIuicion"UI can b ,

- misleading. If all tasks are computed by the same processor. then communication costs are

eliminated. Unfortunatelv, though. the syst em may not be able to complete the entire job in 4

minimum time v.ith most of the processors idle during the entire computation. Papadimitriou

-and L11Iman discuss this time-communication tradeoff in relation to diamond dlass

* [Papadimitriou "Ah41) A diamond dag.1 is a directed ac~ciic graph (dag) that is the

- eneraliy:ation of Figure I belowx to n 2 nodes. Each node of the (lag represents one task needing

SCLoMPLItation. and the edges specify a partial order on the tasks. A~dditionally. the

* CCnmUnicat~on cost of a schedule and processor allocation is defined to be the number of

pro:essor. node, immediate prede~essor triples (P .n .p )such that processor P first computes

node rz before it has com,-uted nodle p (although p must have been computed at some earlier

peonl n I a d ierent processor) or :f it never coninutes p. lPapadimitriou and L liman allow

nodes to e computed more than on,.e :n .his model- Re'ating this to oth er models studying

,ommun icai ion. ,,e can :magine that an arc from node ui to node vrepresents an continigent
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Figure 1:
3 )< 3 Diamond dag

ccmmunication cost of 1. whereas the lack of such an arc represents an contingent%

communication cost of 0. If each node is computed only once, then the analogy is completely

parallel: cost c.,,, is incurred whenever nodes ui and 1, are computed by diff~erent processors. that

is. wvhen node v is computed by a processor that does not compute node u . Since multiple

computation of nodes is allowed. c., is incurred whenever the first computation of node v is by

a Pr,)cessor that has not (vet) computed node u .Using this model. Papadimitriou and Ullman

deri'..e time-communication tradeoffs for this specific kind of graph (or partial order). In

-nrticular. any schedule computing an n X n diamond dag in time 1 = o(n 2'and

_communication c must satisfv cz = fn)

Aggarwal and Chandra also study communication-time tradeoffs for scheduling da(,s

[A ,gar~xa] 1985j. T..e~r model uses a concurrent read exclusive write PRANM in which each

pr ---ssor has a ioc-i] mrner:. and a!' processc)rs sh,-re a gkhbal memnory. The ccmputation is

* divicieu into computation ;nd co~mmunication steps. In a~ omputati or -tep. eacli proc-assor can

*access ,%; o loc 1-ner. )rv addresses. -,hereas n a communication sten. each -rocessor can accessA

ore l.-i mernicr cxc-ress. MU' nrLts are in : .,e *,, ;a * 'nemora . zind ail -inai -;Utp-OUtS _ ma e

7e,.. -7,"0 :e .,ba" A mcrv. a7a'a.nd Chanc-a use -.hi model to s; _adv r-:.-n mia
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%commnunicatior dela\ s. i.e.. the minimum number of cornlnunic.ation step,, necessar% for

*particular compi utatLions: for instance. %% hien twxo it X it matrices are multiplied using only scalar

* multiplications and additions, there is, a bound on communication dela\. of 0 %-.~ here k is

141

P te nmbe & roes', or,. and k K, Aooarwal andi Chandra also stuciv communication-
loe nu be ofprt.

tin'.e tradeoff. Thlev note that the tradeoihi for diamond dags presented b\. Papaclimitriou and

L Il)man [Papadim itriou I 9QS-b] is obtainable only for t= I or t=n

From Oh, po)int fo(rw u.rd I \Xill use the term che'dude to refer to the time schedule and the

processor allocaion simultaneous],.\ Af rati et al. address the problem of finding a minimum

time and communication schedule for an\, given graph [.Afrati 19S51. T[hey use a model similar

* to That of Papadimitriou and hUman except that they do not limit the graph to diamond dags

and they, allow\ each node to be computed only once. Thus, for a gi% en graph G = (W - ) and

s 'ihedule D the communication cost IS defined to be thle number of pairs of nodes (u .1' ) such

-that a .% E V . k u v ) E .4 . and u and v are computed by dliff erent processors in D . This

* pirallelN Papadimitriou and hUman's definition of communication ,when multiple computattin

of iodes is not zllowed. Since scheduling in general is NP-complete whenever k > 3 and the

* partial order on the nodes is arbitrarv. \xe cannot expect better for minimum time and

*communica! ion scheduling. Al rati et al. sh~ow that \xith two processors on a general graph. the

-prcbiem is, still NP-complete. Furthermore. if the graph is a tree and the number of processors is

unlimlited, -,he rroblemn is also \P-complete.

%U

%-,..:..



Chapter2

DEFINITIONS AND NOTATIONS

~ 2.1 The Model

For the 17alance oi this ' or.~ I consider a mnultiple tas;k job) io he modeled as a directed

,icvcl ic -raph. or dag. In this graph. each node repres ents a tkor part of the ov erall job to he

omputed. and all tasks require equal computation time. Arcs rep re-seni. precedence constraints.

If an arc (u v' ) appears in the gra ph. then computation of node v depends on the result of

computaticni of node u ~. node a must be computed before node v .and the result of

computation of node u must be Known by the processor computing node v . This appears to be a

? reasonable form of representation, particularly in regard to a straight-line program. as pointed
J.0

Au. by Topa [Tomnpa 19.50]. Computation of the graph is byv a number of identical processors.

\o\ I introduce se-,eral definitions that will be used throughout the rest of- the %xork to

- acilitate discussion of scheduling such graphs )n identical processors and the comnmunication

c:ost incurred in so doing.

11 General Graphs and Multiprocessor Schedules

The first few,, definitins recard general directed ac'. clic grapnis and schedules for processing

ne. We let G AV , be a Jag w\ ith schedule and proces:sor allocation -, on kprc~essors.

processor schcdule: A Processor chedule on ?' pr,-k oSs'ors for (; is a f unc: - on

2 . k I x.A (N iF uie -et of natural numbers) uch that

I! e~~noa i,; v E:V su&;. -lIhat. .

proc. ~rras-iigned t.. v .1 ',-r -me v iVthe-) -x . 7r-: r~'r: .

: ~ ~ ~ -oe 7o .2 n : . n s 5cfl:'L u led . cst e

. 414,p

%.
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proc(v)- For e,. er\ v E V. p,c(v ldenote, the processor assigned to v in S
- V

n(P): For each pr)cessor P nil') denotes the number of nodes in ' assigned to P in S.

communication node: - node v E V is said to be a c. "ziunnicatitz node if there is a node

% E V such that (v .w ) E ..A and proc(v ) proc(v ).

communication receiver. A node v E V is said to be a c,,mmunicali,'n receiver if there is a

node E V such that (w v) E .A and proc(v ) prockw).-

r

communication to v: I-or e,.erv v E V. the OMmtLiCatiOnl to V, is the number of nodes w such

that (w .v ) E .A and proc(v ) proc(v )..

available node: At an\' timet during the computation of a graph. an available node is defined

to he an\ node i such that all nodes w such that (v .w ) E A ha\e already been computed..

that is. if f (w) = (i. ) then j < .

2.3 Communication Cost

I present t'. , definitions of communication .ost.

Definition 1: 1 r a d ag = IV.1)and processor schedule S c,mnuzication cost is defined to

he the number ol 'a:rs L .v such ihat (u .v ) E .1 and proc(u ) ;; proc(v ).

Definition 2: 1 or a dag ( = ( ... ) and processor schedule S . c,mrnnication c,,t is denned to ."i

he ,he number of processor node pairs (I .v ) such that processor P doe> not compute node '

but ,mputes at least one direc. sucLessor ol .

Pa, ad imKricu ant L :man [Papaoiimitrcu V')S4h] and A trati et al. [ trat hut h u.e i

l-)eK"-.',n 1 , u,,mmunicatin in .he~r xork. I :ntroduce )ehn;utn 2 as a mcre practical.

de'iniLt;cn m.- c lmmunic-t;on oest. B' counting each arc (z. V suih that proci z , pro v ) as

- . .- .-..-. ......--- ',- .v. - -.." -.-.-. - * -- -". ...:-.., -
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S 'iflufli~dito wino D~efinition I we may h~e Paissino the amne intornuition betw, een a ,i-en pair

* e-ral t i ille, I or instance, if nodes u v .dnd %v E V ULhI that (u v ). (u iv ) E .1

rid ',o ri rrocl vi ;4 proc( u ).then the re-!,:L It Ai computing ti must be communicated to

- r :l r il un v aind % Vh iN commutia n is Counted in Noth definitions. how ... e'er

1' onlrruninkation coUnts it. tA ic:e. lDefinition 2 CO)Unt5 it only or e. D~efinition 2

'11 n1'. the numr t e'Il tha.t must )e liN-ed Irom onle Pr~ess'or to anollher. and

t1,SU me that Ole * econd 1prk, essor canl ;a 0 ea,, h1 a Le I or List in proces sing all nodes- requiring

- 2.4 Trees

*par( F or an% node .i park x will denote the parent ol v. In an indirected tree T .park- is

'he n ut U h that vi is tirec ,e abo, e v in I that is the arc 6 av is in T

chi I&,v, I or a node v c(x i denotesn he ch hIld A v t hat is. the node v such t .hat v

rc( v , Inn or e!re, tree. -c v denotes t he r t most C hi' M n The node v

'0 v) In ar or erert - c . d en oe'wte lie :e!a;e itn ,sl child A the node v .

-~~~~ . .K ..K* - . .* .-..*.*.

.i. -%"'"~% 
;,.•" ,.

o0- -P %



CHAPTER 3 1

MINIMUM TIME AND COMIMUNICATION SCHEDULING

ON TWO PROCESSORS

* 3.1 General Graphs on Two Processors

Althkuohogeneral minimum time bce~ln on two,, processors can be done in polynomial

mine Eoffman 1 972]. [Gabow 1 9)S2).when a coMMUnication bound is introduced the problem

a,,ain becomes more difficult. AfWrati et ali. [.Afrati I 9S51 showed that x ith Definition I of

conimunicaition, this problem is NP-complete. Now.k I turn to Definition 2 of communication.

Whereas ,\.ith lDefinition I wxe count communicati m arcs. in the tv~o processor case using

Definition 2 we can count communication nodes. Though in general using Definition 2 of

c,'mmunicatik\n a mode could inlrodu)ce More than one unit of communication if more than one

other processor requires information from computation of that node, in the two processor case.

o-nly, one processor other than the one computing any node might need the result. Ergo. we have

the foflowking lemmas concerning tw.o processor schedules on a graph 6' (V.A )

Lemma 3.1

If :here are nodes u and v such that proc(u ) proc(v ).then anl\ node x such that x is an

immediate predecessor of both u and v is a Communication node.

Proof

If x :s an immediate predecessor of u and i then h~definition. (x. zi E .A .and

Sx )E A. If prcx=procM then proc(x ) prod v( ). Simi~larl\ . if' p roct.x proc(x )

proc(.i , roc(u ) In an-v ev.ent .,c is a communication node.

%U
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Lemma 3.2

% 4, If there are nodes u and v such that proc(u ) 4 proc(k ):ind there is a node x such that x

% *. ,s an immnediate successor of both u and v then either u or ' is a communication node.

Proof

If prc(r ) rrc(u then proc(x d proc). Consequently. v is a communication node.

"irrmilariv. if proc(x) = proc(v), then u is a communication node.

.€. Lemma 3.3

If there are nodes u and x such that x is a successor of u (not necessarily immediate). and

proc(u) ; proc(x ), then some node in the path from u to x is a communication node.

U Proof

I use Induction on the length of the path from u to x. Suppose x is an immediate successor

% o U. Then h\ definition of communication. u is a communication node. Now suppose that

i emma 3 3 is true lr any path of length k - 1. and the path from u to x has length k If for

.,me node v <uch that v is a child of u.' is on the path from u to x and proc(k ) z rroc(-,

.'hen u is a communication node. If proc(v )= proc(u ). then proc(v) , proc( v ). and the lengtn

* of the nath from v 'o v is s - 1. Then by the inducti, e h\ vothesis. some node on that p;th is

r a communika.:on noe.

.'.orollarv 3.1

- %

-aL
-.o'- . . . . . . .-. . . ..- -' ' - ' ' - ' - "-p' ' - - L. ;?
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Proof

TIhis follows directly from Lemma 3.3. If proc(u)= proc(x )then a node on the path

from v to x is a communication node. Similarly. if proc(- proc(x ).then a node on the path

from u to . is a communication node.

Corollary 3.2

If nodes u and v such that proc(u ) proc(v ) have a common predecessor x then at least

one node in the path from x to u or in that from x to v is a communication node.

Proof

This. too. follovs directly from Lemma 3.3. If proc(x) = proc(u ), then a node on the path

form x to v is a communication node. other%vise a node on the path from x to u is a

communication node.

Corollary 3.3

Suppose there are nodes. u . v . v,. and x such that i, and i% are in disjoint paths from u to

X If ' and v, are computed by different processors. then to compute the subgraph defined by

all paths from z, to x requres a minimum communication cost of 2.

Proof

B, (rollarv 3.1 either the path I rom i to i or the path from w to - has at least one

,,nmunIdtwn node and hv ('oollar', 32 e:ther the path Irom u to ' or That fo-n u to %% ha,"

a .,mmun cation node Then the k h,,:e t-uc:ure has at least t'o XO mmuncatlon n hes, nenc

c,;municaion o,)st is at least 2.

%, %

. .4

-" .-... -..,-, ., , ..- .--.v -.--.-..- :- -.,-,,.--, ,- ,-" .-.'-. " : --" -- -: ---: : >-:: .: -:::-:": ::"- :-: -:"
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Now I am read% to introduce the problem. From this point on. wheneer I speak of

,n- munication I am referring to Definition 2 of communication.

Two Processor Scheduling(2PS)

INSTANCE. Given a dag G A(\..4) and integers c and I

QUESTION: Can ; be scheduled on two processors \,ilhin time ! and communication c

Theorem 3.1

2PS is NP-complete.

Proof

To showk that 2PS is NP-complete I reduce 3SAT to it. Recall that in an instance (X *S ) of

3S AT ',eare gi',.en a set X = {.x. . .x,, ol \ariabes. and a sets = -1 s .i ........ of

clauses where each clause isof the form s. = z. :2 3) such that , x or . for '-ome

x E X and i .j . I :< i : 3. 1 < j .n. Furthermore, for each J . the literals -. . and

"- are distinct, and for no x E X are both .x and .f in the same clause. The question is

3 w: nether .he .ar:ables have a truth assignment causing at least one literal in each lause to he

true.

Y:rst. for each E X construct a ,,ir nod? gadger as in Flgur' 2. The our nc*des for each

ariahle are a . v... and . Node a ., ,he source node. '\ Ith arcs .,.) the tX, oenter noties x

and . represent:ig t.-e variable ano its :,rnF ement 'A-n!h in turn have arcs no..ce , . the sink

n de Next. .or each v E S construct a "- e n,: d .- r Figaure 3 Aigain. '-ere i- i source

noe * . ' 'n arcs t,. the :h-ee :enter n., e - - ant4 7 , . ,hree center ,.de,' ,I ea.h

.x .. .. - , d;!t , .p ,so , i,.: '. i.'n the thre--' U; ,,. .. he ' iv 7!-v ;r tu;2. ij ! e 'e,,:, ""

i1 
" v  

. . ~ '.c :',at .. e 7 . fle:n~ ,' :e ,'ri ,0 -n ,des ,,I "e .\idgit- "<~ : '. -

- - : . .. Ut.',e r -rm. ' j. . e ~'p ., c;:it-"i .. J t,- eJ.

S. ..............- ............ .



source

center

-pt

sink

V Figure I:
'Gadget" for node x,

as source

Z12 Zi3centers

sink

Figure 3:
"Widgito for clause 5,

To construct the graph for 2PS. connect all of the gadgets follovwed by all of the w.idrits

into one column, identifving a, 'ah b. 1< i it + m . Cnsequently, the source of

*one gadget or -x idgit is identified with the sink of the previous one in the column. Add
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,lt'killlo011,11arc I rom the j alrdt'le ,,idoet, l t he 1, 1-,e as iI ]IoAw . I et S be
- .- - .If -=. rme I < ; 3. som 1 < , ien ,n trooue an a:c rcn node

to n,,le Si ilark. if for ,,me e 3. 1 n then introduce arc

I ast. add the ape\ .I.\ and ar,. '\ a ) -,,r all I i . - rn as>,el as an ar.

1 \ b T,)hat is,.- lA s i -,in ie nde ,.th t rng t, all o; the source. sink nodes n ttie

"irmn "' c.mr 'tete. the fri - ', rur o ,T ,. t '1"-, \ ,. set

211,1 +3?7, + c 21 -- -m.

"" n examrle. Lonsider the folle,(. ing wo',are , 3A TI':

1.* = .. . A. X V

I ,cure -1 .ilustrates the proposed graph representing this instance of 3SAT.

l ho'x that an instance of 2PS constructed in whs'av is equivalent to the orLginal 3SAT

.nqance. -upse that the instance of 3SAT has a satisf vino "ruth assignment 7'. First. assign

. e a-c mnd all of t~e a and t' nodes to the first proces~or,'. For each , ariable f , s

*,s;,ned -he .,alue /ise in 7 then a.sign x to pr,cessor ' for computat, on: otherwise, assign

to 1' .Asi-n all of the otnter nodes n tile gadgets lo the second or ,cessor (C ;. In addition.

t- , one of the center nodez n e.,ch cla.;se . ,rt associated %,,. h a ,-uze literal If more

., tnar , - are trze 'hen choose ,ne arbtra'iv Assi-r. i i )t'er x.idoit cniers to nrocesscr r

I 'hus. - .so r a., a-,,ned e .t ,vne enter n.)de )I each arjable a:et and each clause

, ,::' a t(n hng , -e Lnd thle ;~ ci"7" a,:s.. nz-A To et; o: th s :sI'C '~ rcs r

I":*:" .,

a'.2

- -"

7,".e-, . -" ". , -.
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t=23: c =18 7
Figure 4:--

Graph for 3SAT example

.
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time 2i [-ach processor computes one :,idget center at time 21 * I For aH I nj n

compute the 'A idgit associated k ith clau.se c by the ,- hedule: P con-pute a. at time

2n + (3j - I ). The three center nodes ire computed by the two processors at times 2n + 31

and 2rz + (3j + 1). The order of their computation i, arhitrar\. Fhe final node b is

computed b\ processor P at time 2n + 3m + 2 , hith , ,he requi-ed Imit.

To determine the ommvinication cost. count the coimum ncaton nodes. Since both

rroce, sors ,ork on all centers. by Lemma 3.1 each source ;s a omm unicat ion node. (The ape\

is not a communication node.) Also, each center note omputed b,Q :s a communication node

since it has an arc to a s:nk that is computed b\ P . The only other nd.les in the graph are the

center nodes computed buy P - I claim that none of these are communication nodes. [aci. ol

these nodes has an arc to the sink of a gadget. also comrued 1\ processor P and1 perhaps has

arcs to center widgit nodes. The processor assignment \wa., ;uch that Q onl\ computes 0 dgit

centers that ha\e the \alue :rue in T and tnerefore ha\e processor Q computing their

cor -esponding gadget centers. Then no gadget center compu-ed by P has, an arc to an\ ' it

center computed by (. . The widgit centers ha',e arcs oni\ to source -ink nodes. Since P

comp:tes all of the a and ' nodes, no %k idgit center com,-uted o', P - a c mrnun:cation none:.

er2c. no center node computed h. P :s a communication node

Counting the communcaticn nodes .c e find t rt , or the :u-e ; a z -z for tne

e enters c$*'. uted by Q This 'tals 2- m . whch :s or ccmn, rcat: 'n hound.

No, zL.-n, ose the nstance of 2PS constructed a'oo',e ;ias a :ol it:on. .ho x that i he

:crrespondt. instance o,: .-T" s sa:-fidie I introdie am,'ther 'emr. X7

Lemma 3.4

S- t .ie !.. "he: 'rU- :' e. el:

,io

'- - a - *~ . .. . . . .. . . .. . . .. . . .. . .. . . .. . . .. . . .. .. . . . . . . . . ..... . . ,- . -
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ii A single source or sink node is computed. or

iii I One or t'%%o center nodes are computed: if two. both are the center of the same --

gadget or , idg-it.

Proof

Since the apex is the only node of in-degree 0. only .AX is computed at time 1. therefore (i) r.

i,; tri\. al. Since the source/sink nodes are ordered. -: .. if i < i. then a is a predecessor of.:-" :
a so a must be computed before a. . Node b, ,,. is a successor ol all of the a nodes and.

therefore. must be computed only after the rest have been finished. Therefore, no two ,* 6

source sink nodes can be computed at the same time. Similarly. each source sink node is either

a predecessor or successor of each of the center nodes and therefore no sourcesink can be

computed simultaneously with a center node. Thus. no other node (an be computed at the same

time as any single source/sink node. -.

Since the center nodes cannot be computed at the same time as any other kind of node (by .

(il and (ii) abo\ e) if one processor is computing a center node the other must either be idle or

also be omputing a center node. If t'mo center nodes are computed concurrently. the must
Iz

both be from the same gadget or '%idgit since for exerv gadget or 'A idgit v . the center nodes of

e\ erv other gadget or widgit in the column are either predecessors or successors of all nodes in

V

N

Corollary 3.4

The minimum time for computing the center of a gadget is I. the minimum ter a %i idgit

,e."er ,- . nd 2 .,o obta:n ,hese minima both processors must ,,ork.,

4. '

"3•
-m
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~Proof

Since each gadget has tv, o center nodes, the only ,%av to compute both in time I is for each

of' the t,.o processor.,, to compute one of them. Similarly. since ,idgit. have three center nodes.

one of' the to processors must compute t'ko of them causing the iMinimum tine to be L',o. If

one processor did all three the time would be three.

* 13% I.emmnma 3.4 and Corollarv 3.4. the minimum Lime for cormputing the graph is

I (apex)

+ 7" + 7n + I (source'sinks)

+ n (gadget centers)
J,,r

+ 2m . (\idgit centers)

= 2n + 3m + 2.

This is the time bound giv en in the instance of the pr.oblem. B\ Corollar', 3.4 we see that to

obtain the minimum time for each center. both processors must A ork. Thus, in an% solution to

:his instance of 2 PS. both prncessors are active on e\ ery center. Then by Coroilary 3-3 the

.ommunIcation -.A ithin each gadget and w idgit is 2. hence the total communication in the gadgets

.and .k dc_!ts is 2(rz + ,n ). This. *.oo. is the bound exrressed in our instance of 2PS. Then the

* - apex ,annol be a commanication node since all cmmunication "s "ased in the rest of the graph-

('all the rroces~or comru:ing 'he apex . Since the apex i,, not ., comm.,mication node. Il

,,urces and sinks are also omputed bv P sinc. or all I < n - rn -he graph has ;rcs

AX ." a ,as is arc : .\ b .. ince 5xth t?ce> -or . act .e cn \r er n"- ! H ,ource

r de- are 'm , jt.cl .nri es. M . eC.:l n- *. , -e. - .. .. , u ,o ri Iie

-*" 7" .-. ,.,: . .'rIte: .s 2(, -1 -2 ,inLe 'ke ed- " . .m .ec ,n, . or. 4nomm i. r . '. r:.

%"%

% % %

P..f 4'A &-a4-
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none of the centers computed by P is a communication node.

Ncw. make the truth assignment as follows. We know that processor Q computes either

x- or 5', but not both v ] I j r. If Q computes x1 . then assign the ,,alue iue to

ariable x if Q computes node then assign Jaoe to \ariable x,. Since gad'et centers

computed b\ 1' are not communication nodes. Q must compute the gadget center predecessor of

e,.erv ', idoit center computed by Q. Consequently. with our truth assignment. each clause has

a rue literal corresponding to the w idgil center computect by . Since 1 computes at least one

center node in each clause 4 idgit. each must have at least one irtue literal, and the truth

assignment satisfies (X .S ).

3.2 Limited In-degree Graphs on Two Processors

If '%e assume that our graph represents a problem .ith fine grain parallelism. i.e.. each

node repreents an elementary operation such as addition, it makes sense to consider graphs with

in-degree limited to two since most elementary operators are either unar\ or binary. Using the

elements of the pre,,ious construction with one change. I show, that scheduling a graph of in-

degree2 in minimum time and communication is also an NP-complete problem. To do so. I

introduce a nek subgraph structure, the 11 -node modified widgit. or rzodgt \.k hich is pictured in

figure 5. Label the nodes in the modgit .1 through A. starting with the source and labeling

from left 'o right on each level (in Figure 5). Nodes B , C . and D all have arcs coming to them

from node A. Now let nodes 1 through J be the center nodes \ ith B. C . and D heing the

crucclcemers. Node A has in-degree (). he crucial centers and nodes I and J ha\ e in-degree I

" hereas all other nodes in a mo,!Vlt ha e in-degree 2.

I n
°- ,

q:
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An I .od odi

,Lemm 3.5

scedle Figur 5:elesthn7

Proof

Sn oue A.ns he c. )m-uted o-<re anl )th,,r no'de. ..:zimuz i ' s eeivn

ith ir -- ree and .-vi~eo a n: iP cessc~r itrne -6 -rs. ,n,; nodr- c anne. -e , mrute

until e : her ~c~e.bc, h iot~ A' ano .1 nuKt .e .- mp":ted a] -- e. th'It ,n, rce>sor

2. _



.7 A~

must,1 he idle during computation of each of them. The other nine nodes require time at least 5

I to be computed on two processors. so the whole modgit requires time 7. [igure 6 gives, an

e\.imrple Of a Schedule completing in time 7 to complete thie proof.

Lemma 3.6

To Linpute a modgoit in minimum time on t% s 0frocesors. eac h proce.sser must compute at

Icast one of the crucial center nodes.

Proof

To nmaintain minimum time, a processor can be idle for only one time unit other than times

I o nd 7 After node .4 is computed. nodes R C and D are the only available nodes.

riLirthermore. no other node becomes a\ailable until both B and B have been c.omputed. if all

three ot the crucial centers are computed 1' the same processor. then the second processor is idle

!,ajr inL, ornputation of hoth P and D. \x hich renders minimum time unattainable

R C

lim J) Idl

7 A' Idle

Fiur 6:
3 r~es 1) s-iu e i

4 F I%
%I % %
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Lemnia 3.'

(>rnruaiw n of a modoit :n nmin)im ui t me )n t'~ c processors require,, communication costI

~ *at :ed 5.

-k :'A -4 5~Ti \ :ounin,; c)I~IMun:itln nodes. 13\, 1 emmd .3(0. it least one ol the

o7 L; : r' i. onlt u ho tH.1echi prk.cesor (,o e Ill )eswr ira )PUeN kne cCa I Ci ter !nd

e!, ot: te Tue A hen hK I enmrna 3 1 node A 1l 3s :,n: Lilual ion node cA 11. ha.I e

Case 1: at nki i) are comnputed 1). ,he saLme rroteSS'Or

\Vo! U Lt loois 1eneralI L ', let P' c)M !'LTe 14 arL /) Node .1 Mu' U C 1 rne at tine -1 1 e

ikR1,h node.- r n / ust he or m pu tIed 1)et re eitlvi her or F can he J mnae here! o re

I n~-e!t her P: nor Pcan he COMpt1,1.d het ore tin'e 10a' n.. -s ie d~t

no,'es 1? ind 1)I r n:wmd~it t -e tomlrod in me 'n,,(tes ind G rra- t then he

mrIneI ';Mre I 2'~ t .adi .,;c A ai t me Ik-re roC t i~l a

-~~~ i L. I,.o ~ .~r ~i,: I eIm a2 ih~I*

e o, kle n, .,jc~ r -1 hoth .ntern Fhen there are at

Ca se.' a-

cai 2. 7-

--F. - . . . . .



13', I.emma 3.1 node C is a communication node. and b\ Corollar , 3.3. at least one of

noiedes G . ,I . and J must he a communication node.

Case 2.1.1: proc(L ) = proc(J

II proc(E ) = proc(G ). then proc(' ) proc(lI ) and vie ',ersa. In either case one of nodes

L and P' is a communication node. Then the communication nodes are .. C . nd at least one

eah o1 the ,ets B .DI I. and {G If1, I .J

Case 2.1.2: Nodes E anti 1: are computed I' different processors.

W I emma 3 1. '.. ith u = v = F. ant x = B anti 1). both 13 and D are communication

n, oe, lhen the communication nodes are A .B C. .D . and one of the set iG .1 1 .J i

Case 2.2: Node,, and II are computed by Processor P.
W

PreQsor Q must compute at least four of the nodes B through J . Consequently. Q must

,,i,,te at leat three of the nodes F F I and J . since it computes only one of the other nodes

* A In particular. ( must compute at least one immediate predecessor ol G or! . and at least

e ' 't:r :mmediate successors. hen the comm unicalion nodes are .A . and at least one o

he rairs ( P C L" -. F ). (G . 11 ). and .)J

Case 2.3: l(oth node! (,; and I1 are computed bv Processor Q

Ii. "ne !einition of communication. C is a communication node

Case 2.3.1: V,,des P, ant F are computed b\ the same processor U

i -- ie ihat ii pro , 1 = rroc( F I. then prcc(l, ) = proc(I. = 12 ,e.ause other x :se .. e

Sap, ".:C.. ,he time bound Thus. ricdes S 3 -. F, . and If are all m,, cted , Pr,,.es-,r

,.,-n Pre,,r 1m1ust c,'rpute both I ind J. Then communication note, are

SC" .1 , and It
%,-.

• -~~~~~~~~.............. .. -. . - --.-..- ----.- , - .-.-.-.---..- ' ." "-q",.-,-,--- --. . - . '-"--., _: , -- . ,-. ' .. - ...-.- .-...- ..-.- . . ., . . -. " -. '.' . ..& ., ...- ,, ,,..' ' ' , -,% ,.
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Case 2.3.2: Nedes A' and F are computed h\ ditlerent proeessor,

Again b, lemma 3.1, both P and D are .ommun!(ation nodes Then the communication
#N

nodes areA . C. D. and either E or F.

In anx e\ ent. communication of at least 5 1! incrred and thu,, the Lemma is pro,.ed.

We are no'A read\ for ihe statement of the rroblem.

Two Processor Scheduling of Graphs with In-degree Limited to 2 (2PS-2)

INSTANCE: (;izen a directed ac, clic graph G =(V..) '.W ith maximum in-degree 2 and

k-, integers , and c

. QUESTION: Can G be ,chedu led on tvo proces,ors in i;ne no more than t with

.,niniunl.ation cost no more than c

Theorem 3.2

2,PS-2 is \N )-templete.

Proof

1 'x il sh,- this U,in a proof paralleiing uh ;t u Jo br 21PS. Recall that I reduced 3-SAT

to that pr,'biem

ro reduce 3-SAT to 2 PS-2. again ,'mtru t a 4 n,)de '.,ad;et for each of the r ariahles (as

h e!,.re or A the M :Iauses. con'tr,: a mdgn. ]' make the ent~re Orapn. acain hain

' " " ,_a,'.et- .rid rod2 t. n J nr .a-e.o no:0 .fquate "h "nk cI one

.%l

'rern *r- u,. -: - , " [ - - r ;e ... e -m ',2-. \'ere L. ,s

k, t." , : :' " . ait: .1 r,', . "e' , 1 . W' te- 2,, .r : ,ree ,

! l . * -V ° " . V. " .% N.= . • . .. . . " - . .. . " •-•. .. "
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more than 2. and the source,; of ail gadgets and modit- ha', e n-degree no more than I. as do the d

crucial center nodes of the modits. NOs add one neA node. the subsink . and the arc

(A .. S ). Again. add the apex .X. I ih arcs from AX to all of the source nodes (increasing -"

their in-degree to no more than 2) and t - ar, to . i,, ng it in degree of 2. In each modgit. MM

associate one of the crucial centers 'A ith each literal in the clause, thit Is B. represents I. C

represents-: _. and D represents :,3 ri ... i in Next. a; in the case k ith 21PS.

connect the gadgets to the crucial enter nodes of the modgoits. If v=. for some

I i n. 1 < 3. 1 j In.then add arc( .:). Similarl . if.A x., for some

i . I k 3. 1 j n.add arc C :-x - 'Ahere. in both cases.,a means the node

repreernting:,. in the modgit. No,x each crucial center node has one additional arc going to it.

hringing the in-degree to 2. Let t = 3ri + 7m + 2. c = 2n + 51 . As an example. recall 3SAT

example For the limited in-degree case. the graph looks something like ligure 7. Note again . ,

that this s the minimum possible %alue for t Since each gadget must be totally computed in

time nc less than 3 before the next can be started, and similarl' with the modgits. in time no

;ess than 7. The apex and subsink account for the other two time units. Similarly. c is the

minimum r.-Sible communication 'x ithin that time Since each gadget requires communication 2

t,- a~hie'.e min:mum time. and by lemma 3.7 each modgit requires communication 5.

%,,vx Suppose there is a satisfying assignment for the 3-SAT problem. Then the graph can

he s~heduled 'xithin the time and communicat;on bounds as fellows. As in 211S. let P compute

the apex and all source and sink nodes. Furthermore. if a variable .1 is ass;gned true in the

satis; mg ass;gnment. then P computes node T ', hle C computes node.v. (vther'A se. P

,omrutes node i: and Q computes node . Again, pick one true literal I rom each c:,iuse. I: the

literal p!(ket! for a particular c!au-se is -. _.e.. it correspond, to node C . -chedule the clause aS

in i. re S. Communication ,ithin the modgt :s 5 . ith communication nodes .1 , B . C . V )

and I If. c'n the other hand. the chosen node is P or ) . schedule the rnod,, it as in lhiure 0.

Again. -ommunication x ithin the modgut is 5 with communication nodes A . . . C . [ . ano J

-.................... 4*
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time I
I A4 idle
2 P C
3 ) idle
4 t' I:

5 /I
J, I 1

7 A idle

Figure 8:
Schedule if C is "chosen" I or Processor Q

time t1 Q
1 -1 idle
2 B D (revers ed it P is the chosen node)

3 C idle
4 1 F
5 G.
6 1 J

7 A idle

Figure 9:

S hedule if 1 or 1) is "choscn" for Processor C)
s'.,.

Because all center madget nodes computed \ ' go to crucial Lenter modoit nodes LompUted b"

P nc gad'et center compu:ed b ' Is a communication node. althouh all those computed 1> )\

A are. As in Theorem 3.1. the graph is scheduled by first computing the apex and then keeping P

,,nstantiv acte',.-hile Q) %orks one center gadget node and 4 center modsI nodes for each

".ariade and clause respect:% e N

%'oS

SUcnver&v. sUppose that the graph can be scheduled \A ithin time 3n + 7ni + 2 and

L Ummunicaton 2,1 + 5rn . I -sho\ that the ,orresponding instance of 3SAT is satisfiaole A- I

p \inted It. tor this graph this :s tf.e mnim..m ,.sahle tLine and the min:mum conmt,n ,11,& n

for that '.me. Then each gadget incurs ,,Mmun1at:,,n 2. each mcLttit .r:urs comrnunIat!on .

a",: ne!:'her the apex nor an, of thesik r'ole'. an be communiat.on node,. Then A . all

4.

sources, all inks,. and .S must be computed ,he Lame processor: 'xithout Mss ieneri:1, ".

% %
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let it ie P A,.ain. tile cad.,et ,eners .kinrniited 1)1 P ann,,t be c,:mrunicatamn n~)tes.

CfneuLent I. P1 must comftput ec C\ r', rt ; enier mod-t node -% hos.e iimedia ze lpreteces.su r

khe ~ .ier Lee r IS c11mPuted t) P ll I emma 3 0. hwi.,e'. er . at leastm ,,e rucia kenter )I each

nimtdgit lit e :omputed h\ Q3 Since no .n~er -,adoel nokde c'Om piled 5', P !' a

F1.1 .71m m ric tion node. tile ",Id et I mi m d a e p e e esor )I the crucial :enter cOIIIP fl d h. (

:,.I ti o !0 ile - 01 Uted b" :,I ee t he end of Lth'e ;"C%' ILIuS prod ;. A,-ain make the follovx In,-

* rth,::cmet.If Processor (2COMPLItes node x for the ,ar;ahle x. , -n It :xC to 'ariable .1

o'lhier':. isc as.xin thle valUe loire to v As before. this, completes the proof. since the literal

ia111d ' ith Ihe 11nodgIt ccI conter computed by Q in each case ro ust ha'. e thle .alo tue
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CHAPTER 4

SCHEDULING COMPLETE BINARY TREES

ON TWO PROCESSORS

Iflu [ '061] designed a polynomial time algorithm for scheduling computation trees in

minimum time regardless of the number of processors. ,x he,eas Afrati et al. [Afrati 19,S5]

sho% ed tha t .o mijnmize communication %%ithin that time frame is an NP-complete problem.

\loreo'. er. I hax e shc\v n that ,,heduling a general graph on two processors in minimum time

and communication ( ithin the time frame) is an NP-complete problem. Ho% difficult is it.

then, to schedule a tree on t'o processors in minimum time with minimum communication

cost?

I vill address only indirected trees. For these trees, since each node except the root has

outdegree 1. Definitions I and 2 of communication cost are equivalent. In an effort to gain some

insight into the problem of scheduling computation trees on two processors in minimum time

and communication ,%e study special kinds of trees, specifically complete binary and ternary

trees. Chapter 4 jn\estigates complete binary trees. w hereas Chapter 5 examines complete

ternary trees.

Complete binar, trees are, in fact. quite easy to schedule in minimum time and

communication on t'vo processors.

Theorem 4.1

The omplete b1nar\ tree B4 of height k can be scheduled on twxo processors in time 2

,, th communication cost of 1. Furthermore. computation of B, requires at least time 2' and

communication cost I to achieve this time

*4
.o "-7
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Proof

I ir- ,onider optimalht. ()bserve that B. has 2" - n rodes. The time to compute it on

2' + I 1
t., proc.es,ors. then. must be at least _ - -1 2

To !etermine the minimum commuMcation. uppo, e proces,,or Q computes the root . . and

proce,, P comrutes" ome other node v E P . This muSt he trae for some node v since to

o"tim ie time each procesor must compute hall of the non-root nodes. B3\ Lemma 3.3. at least

ore node on the path from v to x is a communiation node and comm unication is thus at least

9 1.

The - chedule for computing B, in optimal time and communication is simple. For each

node v .et proc ') = P if v is in the right subtree of the root. proc(v) =C) otherwise.

Processor C) computes the root. This guarantees communication of 1 since rc(root) is the only

£ communication node. -ach prc.cessor computes the nodes in its subtree one at a time from the

iel .most 'vest node to the root ol the subtree. Since each subtree has 2' - I nodes, this part

" "f the omputatwon requires time 2 - 1 At time 2^ . computes the root.

.J F

?% - % %
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CHAPTER 5

SCIIEDULING COMPLETE TERNARY TREES

ON TWO PROCESSORS

5.1 An Upper Bound for Corn .unication Cost (Schedule)

('repete ternar% trees offer more of a challenge and consequent]y more insight into the

Q\eral! dtifficaltv of '.cheduling general trees on two processors than do binary trees. Since each

internal nde ha, in odd number of children, we cannot minimi/e communication by simply

rlitinz the tree do', n the middle as \ ith binarv trees. Instead. I present uipper and lower

Nound on iomuncatin for computing a complete ternary tree in minimum time. These

Shtund differ onl% b\ an additi'e constant.

3) ~-1
-ir't define the function N (j ) to be . This is the number of nodes in a

,:cmplete ternary tree of hegh j

Theorem 5.1

Iet F Ie the .omplete ternar, tree of height k > 2. and let h be the largest integer such

that k t + V(A, Then ." can be scheduled in minimum time with the communication cost

at - 't k - I 1..

Proof

let

I. = ; -: - 7"1' >1 () "

II'. (efin.!tn o)f t. k < h -1 4- V i + ). hence L < 3" + 1. No-., picture the tree as in

Iigure 10 Fach T. hai height k - I - j and the height of each center node C (i ) is k - j. L.et

5 = .h (. ±- - 1. and construct the schedule in the following ' a''. Let processor P

i

.- : .:-2. .-.....- ,... ?. '-',...-',',-',,-. .,-,. -: ;',, ,.Y-<,,,-.-...........,-......".,"...".........,.",......

-~ % %



s.~ 37

?Co. I

'.4.

Com:- te reeof eivt



'V U_ T

.pm.

38

comnpute 1_. _j( mi,e .and subtrees T (lei for '- <, j k. roce-or Q computesI

suhtreesT, (righa ) Ior () 0 j < k - hi - 1. 01 the center nodes, let Q2 computeC(j ) for

() < < b<and I compute all others. i.e.. C(j ) for b < j k - "

For tihe timing, first notice that IT,,(R)I > -.
2

I) let processors ' and Q compute nodes in their suhtrees I rom the inside out. that is. starting.
i...

. ith T, _; .1 (u ). u E {ight . lelt . middle : and 'A orking out tow ard T,,(u ).

2) Both processors continue coI fluting these subtrees until processor Q has only -1- nodes
IL I"

remaining in those trees. These nodes are all in TOright ).

L
3) Pre'.essor P \. ill now have A' (h) + - nodes remaining to be computed in T,,(left ). None

ot :he C nodes will vet have been computed.

4) In -.he next I L I time units. P computes the bottom C nodes while Qcomputes the

remairing nodes in T,,(right ).

5 The remaining uncomputed nodes are all in 7',,(jl1 and in the center chain of C nodes.

Process or P' has a total of N (h )+ A nodes remaining. w hile Q) has NV(it ) + IL+ I nodes
I

le! t to be computed. In the next N\(j ) + time units, let both processors work on their

-,respectiwe nodes. Since none of the nodes assigned to processor Q is a predecessor of any of the
a..?

nodes assined to P. and since C (0) is the only node assigned to processor Q that is a successor

To these assigned to P. processors P and Q can work simultaneously on these nodes for

.\ (ii , - time units (i.e.. until processor P is finished)

t,) Let n finsh the last one (or if L 'was odd, two) C node(s).

%
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nde3. both of the processo> -re eat all ties a0 much as po-ahle. makinc txme minimal

.? \ No'~\k- exam ine thle cnorn iinii at ion cos~t incurred Inl tils e uI ~e. s ea~ h ,I Ale riht and

% ~ ~ ~ ~ o le t uhtree,. of al I center nodes is corn puted ent i-elv byv one process,"(r. thle oif., uommtinication

"7udJes i the ,. edUle are center nodes. r'he Lonunication to each j ) x here j is

-I nce 3 onm putes buth C ( nd t,.\o of its children: C j + 1) and the (root of the) subli ee

/ Ii\ . 'Ahereas P comuteS the third hl re rrd of CC ornI"rin cation is also I to each

C + I < ben e + since process\r P compute, Cc,,r and the roOt om) suhtree

' (10et as A ell as C + (or T, (middle x lhen j = bo+ L eah C( ) ompute s the third

child of C i )The cormunication to C (b + Ih r computed by lQn is 2 since ( computes

. 7' 1(riJat) '\ hereas P computes the other two children of C (bncthn I Ahe ota h

cornmmuinication cost is

(h) 1 , 2 "h I ades;red.

.lence, if co. rnete +ernarv tree T as height k h -- t- Nnh + L teLrooI <te

can T e scl)edued in communicati on no more than k h h + 1.

Ni

N 'c,-ice. Lcmue thae < hog,, k .nbut .i' 'I - 2. Ynen xC Ter ha ,I

" r.j ;'emu a cor etc :r:2ar: -e!n m-:e'

%- O-

% --

.% , "_

U,, b+ +
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5.2 A Lower Bound for Communication Cost

[Ia'. ing e,taht)i'ied an urrer )ound on communicatk n Ost in ',hetdul ing complete ternary

trees. I nov. introdue se\eral lemzmas and fIcts about complete ternary trees and their

,cildtile' to aid in deterniinng , a 1,er bound.

I r .n'tlLe Lhat an\ -ched!ule t.hat minimizes time must partition the non-root nodes into

t. o -et A hose s d,, 1cller b% at rror l I. ,ine both processors must do the 'a me amotint of

.,rk and m ,st plise the root into one of these sets. Call an, partition of the nodes into tv, o

, ..ets a , . r ,n.

5.2.1 Definitions and Notations

Again note that since \%e are di-cussing indirected irees. a node's children and descendants

.are it, predece sors ( rather than its successors) in the partial ordering described by the tree.

Sirmn larlv. the ancestors of a node are its successors.

-or an' cvmplete ternary tree 7T of heiht k with proper partition S = (P. Q ). define the

follo', ing (note that all set membership is .k ith respect to S
N

For every nodev in 7'.letG( = R E ;P.Q such thatv E R

An edke (v. ) is broken i f ,(v) = P and ( I , ) = ; or ic e-' ersa. F-dge v. w ) is

br ,en to level i if node w is at level i (v is at ie\ el i + 1

Define c;,iz1S) to be the number of edges broken in the proper partition S - Frper

partition S ,x ith a minimal cornm(S ) is an ,pti.:ncl pai:ztin"

In a ,miiar '. -in. comn: (. i ) denotes :he t otal narm!er ,I edge- brken i, a. le'. e!,l or

a a "i . e , e I

I et !'( i dente the number 1 nodes :n P at "eel z \,mniarl\. let Q 1 1 Unt e

n .;mber M nodes in at 'i. eli Then) < I' i 3 "i. 13 <

--A



% 4 1iji G~ Pe tht.C6 t'> I- (_ il (I Qhen ( it-n,,e, P ~~~~~ 'i

i a n GU a. )r o e .r Hr c! iv CC P' j E (1. 2..3> tn i Ie 'Ia Io 0f 1 is

i r a E 0). 12. 3;. an a 7 ccen-,!' i node tha. is n the same se,, as exjctl\ 3 a of its

I *ilkl-en. Then. ,.,n a -recei\ L:. is eWt.er a a )-e~\er or aiC . a )-re~.ei% er.

-\ ?i cc:. c- isa node v su,:h that v is a a ) re..ev~er for -,ome I a (3. Similarly

1r a P-i c:cr

U .e denloe the nodes of t he ih' le% el of T' v I L...x 3' a..nd sa'! tha~t v (j)is an a j)

re, e eT- t all I J 3 . hen isan .-- 7ceLiierL\L'l if Z ~aj

Lid A! IU thdt 1 1,v P ca .xled a i-od node ii. such t hat GS(i Q is a C

..2Elementa-y Observations

(>a rI,. Io~e )0 LI-d 0,- 'he nurnmber )f edg-es :-rken in a prop-'r partition S of the non-

'I acrnpete er--r. ree T is a lov..er 1), tnd on The n mr unctonrqird

A .in .n r)n'InIU'nIn I'his is ori~. a lo',%er !cino N ,I tere -,-a\ h'e r.." s& -edule

n 'zn~~ion Uat ai>0 at: lie, -72.C %Ic r~c '.ntine

* * - = . - ~e>E
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(i I k. dI'(i ) = -dQ(i ).

=1

FVr Il k the complete ternary tree T, M, height k has N (k nodes. of "k hich 3' are

S'eae'es. Th s. more than half of the nodes of T. are leaves, so P(k ). Q (k) > 0. Furthermore.

f < >. 'hen P(k ).Q(k .) 4.

5.2.3 &,hedule Transformations

F F rst I ,Iia Il force the st rucl Ure of an optimal partit ion of a co l,lete ternary tree I' of

lhe: t k ) 3 into a strict form. thereh\ facilitating analsis. lo\ard this end I introduce three

trarscrmations Remove3, Remove2. and Elim2. on such partitions. Although Remove3 and

Remove2 are de:ined in terms ol P -recei,ers. the transformations are s mmetrical for Q -

rece,'ers.

1) Remove3(v

SurS =(P.Q has at least one (P. 3 )-recei\,er v. Then in the following manner ,xe

ranstcrm S to ' = (P' Q' ) in which -

i) - is a (Q'.0)-receiver. and

1i) comm(S' < comm(' ).
7'1

Pick a leaf v in Q such that w is not a child of v. Then let

P=P - v ) " ~w
(2) = '  - , ) u ,' 1.

-. me>. n i (' . )-rece ,er ,Aid e %errd s h nalofv' hlr r

Ncx wonsider comm(S ). The three e;e' 'rei v "o v's children are no longer broken in

5, II edJ.es (par kv . v I and "par (w). ere not broken in S . then thev are broken :n S'

- .. . . . . . . .. .... .. ... ......... .. • .
.. *J . .. ..... . . . . .. . . . . . . . .. * . **o*.**.*. * ~ . -.--..--.-.. *..'%*
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1G

V° (

Figure 11:
Remoe3

sne - and w hae been switched toQ' and P" respectively. This could introduce at most two

new broken edges. So

Smm (.S cmm(S - 3 2< com m(S).

2) Remove2(v%

If S has at least one (P. 2)-receiver v \A hose parent x is in Q. then the following

" rcedure transforms S = (P. Q ) to S' = (" . C' ) such "hat

v is (Q' I )-recei er. and

i) ccmnm <- comm'S

Again. k * 'af n 2 .,,Ich ,zit -v is not a chili of v Then *et

-. . . . . . . . . . . -J....
.. .. .
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In this case. %. is now a (Q'I )-receiver since one of its children is in F xhereas the others

are in Q'.Also. . receies one fewer broken arc. At most one new arc. that from w to par(w ).

mas be broken in S". Consequently.

comm(S') ( comm(S)- 2 4- 1 < comm(S). ,

Note that both Remove3 and Remove2 cause the total number of broken edges to decrease.

Consequently. no optimal partition can have either of the situations allowing Remove3 ort.

Remove2 to be exNecuted.
',k2

,.

3) Elim2(%, ..x )

If S = (P. Q) is a partition in which

a) %. is a (P. 2)-receiver,

b) w is a (Q. 2)-receiver, and

Q~Q

PQ

PQ Q
I"-

*, I. .w

Figure I'-)
Remove2

.... ...........------------------.--- ,-,-...... . .
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c) par(v) E P par(x ) E Q.

then \xe transform S to S' = (P'. Q ) in which

v is a (Q' , 1)-receiver.

ii) x is a (P' . I )-receiver. and

ii comm(S' ) = comm(S ).

in the f. Io', ing manner.

Let

p = (P' - Uv }) u ix
C, Q C) Q U{

The only edges affected are those into and out of v andx. Since onlv one of 1"s children is

in P. onl, one arc to %, is broken in S'. Similarly. one of x s incoming edges is broken in S'.

Both (par (v). )and (par (x). x ) are broken in S'. Then exactly 4 of the 8 edges surrounding

p p Q 
Q1Q .1%Q .. '1

pp

'. 5

Figure 13:

* . . !..S

A 

" 
.° 

o



i anti x are b roken in V In .\caiih of i and i i 2 liroken edg'e. Lirrou~nding it i~hc an

to)tals .4. S~ nce nitether ed,-e' ,er jj e, ,ej h, the t.r. onI 'rmation.

.1m (1* o n (

* 5.2.4 Lemimas and Corollaries

* Lemma 5.1 (The Left Property)

We Lan a10ur11. c, thout1LI lo f 2einerdlit';. that in an ortrnal part;Iton of a complete

ternary, tree no Q3 -node lies it) the left of an% P-node at an \ \e

Proof

Consider a complete ternary tree I' o. ith optimal partition S I (P. Q f or a level i . let

P1 ) m . PUi +1) n .Then the number of edges to level i that are broken in S must be at

least 3m - n i.That is. since the mn J)-nodes,- at le\ el i have a total of 3mi children at level

i + I1. if n < 3m . then at least 3m,- - n of those children must be in Q) similarly, if n > 3m.

then at least n - 3mz P-nodes on le~el t+ I Must ha\.e parents In (.Thein an" prionmst

ha,, e at leas-,

S3P( j)-P'j + I)

broken t-dges VIhis minimum can be achie\, ed bv putting the P(i Ilei tmoest node'. in P' and the

(3 :ohtmo..t nodes in C) at each le\e el.

Corollary 5.1 (The Simple Property)

11 ,he Ieet i 1ror'eri; ho~ld., in a partition S ( P. Q3 of a cimrlete Lernar'; ree h-.nn

i) V) le,. el ha.- both a P -recei\, er and a C3 -relei; er.

I!No le\.ei has more t.han one b-receiv er %x here b' E Il. 2K
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u rik I ur ei;ermore no e,.e al ha o th a l-rece-i,.er and a 2-re,:e ier

Proof

%
X11. " he a co, et ternr', tre'~ ih partimon Q (_) ha. ing zhe left properi

.. %, ien el ,, me le',el ha'e i -,,e.e: er. F.amimne the r~ghtrnkst P ree'. er v. Since i a f) -

0 !.' -er at 'a't one 01 't 111ll ren mn;st 1e a (2 -no'de 1,, the I e!t Pr,'x'rt\ al': nodes to the

r:,it ,. on je,,el i + I ;ire in (Q Since all (2 . node'- Cn le',el are to the right of v. all of their

S - 'ldren ML: ,t also be (2 -nodes, hene none are (2 -recei',ers and le\, eli ha', no (2 -recei. er. lr'o.

,. oe',e ha,, both a ] -re e er and a ( rece:' er.

Y ],demonstrate (ii let be a P .b )-re,.ev'er on sone le.el ib E 1 2K. Let w be the

" e!,, ihIld ot v ,nd x be the rim i most child of v Since I b 5 2. w is a P -node. and x

a (2-node 13v the left Propert. all nodes to tie left of A on le,.eli 1 are el-nodes;

-nsequentlv no node o the le! t of cn le\.el can be a P-receiver. All nodes to the right of x

n-m '.e\ e i + 1 ;re (2 - iodes thu,. all of the children of each node to the rioht of v on level i are

!n T Therefore an\ I' -nodes o tile right of on le'.el i are (P.3)-rcei'ers, and level i has no

P .1 .- or P 2 '-r.ei'. ers. 'he proof or I'2.1 - and (C .2 I-recei. er , str;ctlv parallels the

1l,<1 aru ment.

%,

ONI ',xould like to Orc? in ont mal plartition"N = (P. 2)of a complete ternary tree of height

at least 3 that has the ieli roert'  ntoa part;ion.V = i A. ' ,here

cmm(,S ' om m I'

* . .! ' maintains rth " o ', - .d ir: rrer:les.

-.so "hat .'r r':'r . :. , - no --- ;: 'rr il this i :,-bie .no:" , .- n

• ?" _ . " . . * ..- .. . * - .-. . . . . . _.:... ,:...;.-... .::..'..2--...:.~~~ ~ W.? ;,?..-. . , , , .. . ... .. ... . ., , . .-, ..,- .



i partition has this form. T,, force the partition into the aho,.e t -rm. I use the follo\% ing

alIgo ri thm.

% I Procedure FormatPartition

2 begin
3 while there are at least one (1' 2) and one (C) 2 )-re:ei\ er

abo ,e le .el k - I do

.4 begin
5 v -=the low esi ( 1'. 2)-reLeiver abov.e lev el k -I

(that is. the one closest to the lea'.es)
0 x :=the lowest (Q 2 )-recei'.er abo, e level k -1

7 Elim2(v .x ~;Replace S ith S'

end

S, S'
B) end.

Lemma 5.2

(;iven an optimal partition S (,P. Q)of a complete ternary tree 7' as input.

~4FoLrmatPart it ion conv erts S to S' =(P' . Q' )as described in (i) through NOii above.

Pr-oof

First. b\ Lemma 5. 1. .,e can assume that the Left Property holds for S. The only changes

mnade to S are Elim2 transformai ions. We Know that comm(S ) is not affected by Elim2(v..1

so (i) is obvious. I claim that the -lft Property, still holds after each execution of

4Elim2R v ). This must be true if it holds before the execution. Consider node v .Node A. is

a (,P. 2 ,-recei% er. Thus, exactlv tw.o of the children of v are Q -nodes. Then all nodes to the

right of rcdx ) are CQ-node-s. and all nodes to the left of lc(, ' are P-nudes. Since thle partition is

ountimal it has no 3-recei'.ers. so aill nodes to ',he right of v must also he Q -nodes. and all nodes

'.0 its left are P-nodes. Elim2(v.' x ) converts v to a Q -fl(4.e. Since no P -nodes were to its

- right, and no other node on that level is- chanoed. ail nodes to the right are still CQ-nodes, and ail

X
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j- nodes to its left are /)-nodes. Therelore. tile I et r Stpert ,till holds on that le'Tel. The

argument iss\mmetric for the le\ el of x . Hlence alter each execution ot Elim2i x ). thel eft

and. h\ Corollar, 5.1. Simple Properties hold.

In order to sho', that IormatPartitlion terminates I sho'. that the ,oumber . times the test

at line 3 Is executed Is bounded I)%' he height ol the 'ree Ihe procedure :s repeated lnl,, If xthI .- the 2! receers ( 2)-receiers are present :n the parltton at the lime A the test. It so.

ihle -'-recei% er iv tlo.sest to the lea,,e o f I" I,, elri-laiedl h\ Efin2N% . x I. A111 nodes x. hose

, . tatus anged are above the leel of i . Then after Elin12( v . ) ( v or .i = s% is executed.

-the lo', est 2-receiver in the part:tion is higher in the tree than before. and none Al the other-
transformations introduce an\ 2-re'e:"ers at any lo',er le\el. Alter the z th time through the

' while loop. the lov'est 2-recei'.er is no lover than lesel k - i Consequent]\ . since the while

loop terminates if no more than one 2-receiver remains in the partition, the number of loop

iterations is at most k - 1. and therefore it must terminate.

.. . L pon termination, properties (I) and (ii) of 1.emma 5.2 hold. Furthermore. property (iii)

is the termination condition ol the proce(;ure. so propert ( iii) also holds. Consequently. an

t ot;mal partition can be lorced into tile t -rm stated abo'e.

-, At this point ,ome obser.-a',;ons aiout the effect, f difTerent kinds of recei.ers ;n an

orr ma -artition are helptui. Vc- Lemmas 5 . through 5.0 and Corollaries 5 2 and 5.3. a .sa
,omr ete ternar tree ',,ith pr per, n . = (I-. S the form dieiateal :n ,.emma 5.2

- Lemma 5.3
%

!:' .asno() 21-ree, .- r.:' t. Ib. , - ,nd C1(h) I

C,,

N. W ...

-- *%"
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Proof

If le\el h has no Q -receilers at all. then each child of e.erv Q -node at level h is a Q -
.. 5,

node. Then

Q(h + I) > 3(Qh)).

Co('n'equentlvy.

r(h) + 1) <3(P (it)

Then

dQ(it + I) > 3dQ(h ) > dQ(h ).
m

If le\e h has a (Q. 1 )-receiver then

Q(h + 1) = 3Q(h)-1

P(h + 1) = 3P(h )+ 1.

Then

dQ(h + I) =3Q(h)-3P(h)-2

= 3dQ ( ) -2.

Since dQ((l) (I 1.

dQ(h + 1) 3dQ(h)- 2dQ(h )=dQ(h).

By hVpothesis. these are the only two cases possible.

'.,'

* Corollary 5.2

II., and 7 are as described in Lemma 5.3. ar.d there are le\ els h and g such that

k , - l.and dQ(h) 1 land S has no(Q,2)-recerversat an',evelh i ..

then 'or all !e,.elsi h i . dQ g ) > dQ(i (

%%
%'N

52 ;-

,,%
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Proof
P e noof ema53applIedg -h -i tInies. dQ() dQ(h + I) (dQ(g)

Lemma 5.4

If there !s a level ) i 7' such that dl'(j) > 0 \k hile dP( j -1) < . then

a.)dP(j)= 1.

b)dQ(j -1) = .and

c) level j - I has a (Q 2)-recei,er.

Proof

B\ definition, level j - I can have no 3-receivers and can have at most one 1- or 2-

receiver. Since d?( j - I) < 0 but dP(j + 1) > 0. - I must have a Q-recei, er v If v is a

, ( .I )-receiver. then

dP(j) =(3P(j -1) + 1)-(3Q(j-1)-)

~= 3dP(j -1',+2

. -3 + I = -1.

.Thus. v must be a Q 2 )-receiver. Then

d" = (3/'( -1) + 2)-(3Q(j - I) -2)

= 3dP' - 1) + 4

.. " , -a '  'i)=1.ind 3,. -d T-3.,dF. -p 1)-1 r

,,::;.~e~l' d(' - I) = 1.

5.

. . . .. . . .. . . - . . .. . . .. . . .. . . . • . ..
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Lemma 5.5

If S has no (Q. 2)-rece,,ers above le, el " - I. then for anv leel I where I -< I < k I.

dl'(l)= I iff

a) dP(l -1) 1. and

b) S has a (P. I )-receier at le'vel I -

Proof
.1%

The proof of I emma 5.5 has t,.o parts. First I show sufficiency of (a) and (b

If dP(I 1) = I and level I - I has a (P 1 )-receiver. then -

't! ) = 3r(u - 1)- 1.

Q(I) = 3Q(1 - I) + I implyingdP(l) = 3dP(I - 1)- 2 = 1.

To show necessit, of (a) and (b) assume that dP(l ) = 1. Then since S has no (Q. 2)- U
receivers above level I. dP(l - 1) 1 1: otherwise. if .'P(l - 1) < 1. then dQ ( - 1) 1.

hence dQ(I ) I 1 (b\ l.emma 5.3) and thus dP(I ) U -1 contradicting the assumption

dPU) = 1.

Suppose. then. that dP(I - I) > 1. Then

P ) (I 3P(l - )-2

S3(QI - 1) + 2)- 2

= 3(Q(I - 1) + 4.

(I()< 3C)(I +1)2.

Then .,

,iP(l ) 24- = 2.

hence 1)\ the assumption dP(l ) = 1. condition (a) is necessary. Then

Pl) 3P (1 -)+E:Q() 3Q(I -1)-Eorsome-2 K(,e < 2

U

.ee,%,. ,, '.,'.¢.€..',,,,r re '. .J./ ,'.-,. .,.¢ ..- / .,.%" ,_._ .,-,,.'-..'.:..' .- 2. ._ -'.'7.x . ._: _. : _.
-

.,'. r I--



zP(1 = 3'!( - I1 3) (t 1 + 2 E

= 3d1'( -1) + 2E -

=3+ 2E.

Then -;

2E = -2 implying E -1.

Sine I'(l) = 31'( -1 )-1. le\el 1 - I must ha\ea (P, l)-recei- er on it.

Corollary 5.3

It there is a leel j in 7 such that dP (j) > () while dP(j - 1)<0, then there are no

(Q 2 -recesvers above le\,el j - I in T.

Proof

Bv lemma 5.4. there is a (Q. 2)-receiver on level j - 1. Consequently. bv delinition.

,here are no (P.2)-receitersir, 'he tree. Furthermore. since dQ(j - 1),= 1 bv applying

Il I emma 5.5 - I times. '.e find

Q -2 = dQ(j-3)= -dQ() =1.

lurhernore. there is a (Q . I 1)-recerver on eaLn of these !eels: thus no le\el aho- le\ el j has a

" - -receiver

'\ee i I the c:inition of V (.1; (see se-ton 5.1)

Lcmnna 5.6

Jr - - " optmal. and -.re '.- e e.e!, , ..-. that

2...e ,re r, ()-recei'.er !e', - "'e- .:an the la,-- . ' . el Iz .

pN
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f h.h r is the leel of the children M1 the l,, e.t one. and

3 S ha., no ((2. 2)-receiers abo~e level k - 1.

Then

dQ( ) 3> 3"

Proof

The prool is b\ indut.! on on in
44

Suppose ,n = 1. Since S has no ((2. 2)-receikers. by Corollary 5.2. dQ (r - ) 1. By

definition of r. le\e r - 1 is a )-recei'.er level so dQ (r) 3dQ (r - 1) > 3 = 31 for condition

(a). Since

dQ(I, ) -1.

'dQ(i) I + 3 4 =N () N(m )x hich is condition (b).

\0. assume that the lemma Is true for all rn < n With mi =i . r is the le,,el of the

children of the ,i th ()-recei',.er le\el. let r' be the le\el of the children of the n -1st ()-recei,,er

.e. le% el. B% the Induction hypothesis.
-I.

• .' d~J(2r' I ) 3'- .

and
J' 0' 3

II ddQ (i N >/,(n -I1

* Since r - 1. b Corollar,. 5.2. v ithh r' =r- dQ (r- 1 d( (r'). JQ 'By

definition. leel r - I is a O-receiver level, so

, dQ(r) 3dQ(r -I)



55

>,3dQ (r')

Then

SdQ U) dQ (i)+ dQ(r )N (n I + 3'. (n)

5.2.5 The Lower Bound

nov, establish the lower bound for the number of edges broken in a proper partition of a

oomplete ternary tree of height k

Theorem 5.2

Every proper partition S =(P. Q )of a complete ternary tree T of height k > I has more

than k 109o3 k + 1 broken edges.

Proof

P Firs- consider k =2. To make a proper partiticn of the complete ternary tree of height 2.

at least three (> 2 - log 32 + 1) edges must be broken. We~ see this because, since T, has 12

non-root nodes, each of the sets P and Q must have 6 ron-root nodes in it. Either P or CQ m u!-

have more of tne nodes at level 1 in it than does the -ther. W ithout loss of generality, assume

that P haz more. If al', of the nodes at level I are .'i P then six nodes at level 2 must he 1 n Q

v hicni ca u-s s~x edges to be broken. If. how e,. er. t:Ao nodes at leo.el 1 are in P. then at lea!st 9

O'e -dic * N he roe:, must be broken. Furtherm-n.-re.> ;et 5 nodes a, level 2 in Q . at least two

'.0 el e I muszt ),: broken: thus at lea!-t a~eJ~~re brokc:- r

3' 1 i ! nrove Theorem 5.2 b\ co, adic ... I- (P Q)be an optimz!.

t n se ,nMM(S ) -'A - ic - ' ha:_ .-rnkS )=comm(O.

-n h., -? n et)es iren to the lea~est since i re n-~ ,o~ the leaves).

1. 2.
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13v Lemma 5.2. we can assume that S has at most one 1- or 2-receiver node at any level

above k - I and no 3-receivers anywhere above level k - 1. Because T is a complete ternary

tree. each level has an odd number of nodes. Thus. for all 1 i < k - 1. P(i ) Q(i ).

Without loss of generality. let P (1) > Q (I).

If there is no level j such that Q(j) > P(j) then ,dP(i) > k > 1. hence the partition
1 =1 "

is not proper. Consequently. there must be at least one level j such that P(j) > Q(j) but
S,

P (j + 1) < Q ( + 1). Call any such level a switch-i o-Q level. If level k - I is the only

switch-to--Q level in T. let j = k - 1. Otherwise, let j be the switch-to-C level furthest dowx-n

in the tree other than k -1. Now we have two cases.

CaseI j < k - I

By Lemma 5.4. dP(j) = 1. and S has a (P. 2)-receiver at level j in T. Consequently. by

Lemma 5.2. S has no (Q. 2)-receivers anywhere in T except. perhaps. at level k - 1.

Furthermore, bv Corollary 5.3. S has no (P. 2)-receivers at any level above level j; hence j is

the highest switch-to-Q level. In addition, by Lemma 5.4. S has no switch-to-P levels above

k - I since a switch-to-P level requires a (Q. 2)-receiver: consequently. there is no level i

above j such that Q(i) > P(i). Bv Lemma 5.5. since dP(j)= 1. dP(j - 1) = l and level

* j - I has a (P. 1)-receiver. By applying Lemma 5.5 j - I times. we see that for all

I < i < j. dPl(i ) = land level i has a (P. 1)-receiver, and level 0 must be at least a 1- t-.

receiver le,.el. Level j has a (P. 2)-receiver. so comm(S. j ) = j + 2 and

Z (,) e( ) + j.

Since S mus, be a proper partition.

E P(i,) E Q(i)-j +E
.- 1 - 'N

''here E E 1-1. 0. 11.'

%-
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If at least one edge on each level below j is broken, then comm(S. k - I) > k + 1 For

comm(S ) < k - log 3 k + 1. at least1r;

k + I-(k -log 3k + I)= logjk

levels between j and k (exclusive) must be 0-receiver levels. Clearly. all conditions for

Lemma 5 6 with h = j + I andrm = log3k are met. Then by Lemma 5.6.

, dQ(i ) N (lg 3k
+1

"-.... 31log3x + I -- "

3

.x 3k - I "

2

where r is the level of the children of the lowest O-receiver level (not including the leaves). If

r = k . let I = k otherwise, 1 = k- 1. Then. again since S has no (Q. 2)-receivers* above level

I. bv corollary 5.2. dQ(i) > dQ(r )foralli.r < i < . Thus.
S3k I%1,"'

+1 2

Two possible subcases arise at this juncture.

'.5. Case 1.1 Q(k ) > P k

In this case.

3ko
"'5 '

E dQ (i 3-

Since S has at least o,- -t I O-recei'er levels (including the ;eaves). T has, least that man'
5"

le' e.s belo A . J hen

k J i ;3k

C'ear' . the-.

3 - ! ,

p-, )..
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'4.

=

. + 6. E1-1.o, 1).

Furthermore.

3k - 1 '
k >1 impliesk -og 3 k < -

and ".-

k j+ log 3 k + I implies j k -log 3 k -1.

/5 so

j +6 E k -log 3k.

Then

-log3k > j + -= dQ(i)

>3k -I
3k -I> k -0log3 k

2V

or

k - Iogsk > k - 1og 3 k

,v-hich is a contradiction. Thus. in this case comm(S) > k - 1og 3 k + 1. h

Case 1.2 P(k ) > Q(k) 5.

Since j < k - 1. we still know that dQ(k - 1) > 3 ="" k Since P(k) > Q(k ).at

least -'3-1- of the nodes at level k - 1 have children in P.
. '.

Concerning the nodes at level k - 1. we know that

3 -  2P(k - ) + dQ(k - 1):

i.e the total number of nodes at level - 1 is

:7q
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J.

P (k -I + (C)(k -I) P (k - ) + P (k-I

Then

3 -P(k -i+ dQ (k -I
2 2

So t lastdQ k -1)Q -nodes on level k I ha'.e children in P hence 3-, least
2

d. 2k x3 dQ (k -i+ dQ(k -1 +>

edges are broken. Then the overall partition has

6comm(S j + I+ k + 1> k- log3 k + I

which is a contradiction. T'herefore. in this case. comm(S) > k 109o3k + I.5

Casell j = k -1i.e..for alll I (i < k .PG)> Q(i);(k)< Q(k)

IBv Lemma 5.4. if P(k ) < Q(k )while P(k - I) > Q (k - I1), at least 2 edges to level

k - I must be broken. If at least one edge is broken to each level above k - I then

comm(S ) k + 1. To get comm(S) k - 10g 3k + 1. at least k + I - (k - log3k + I) levels

aho'.e k -I must 'be 0-receiver levels. Since P (i )> Q (i )for all 1 <, L < k .b-v Lemma 5.6.

d r(k -) I > 3'O0"' k.

and

~dP(i ) " -Ik-

=1 2

neca use S is a proper p'ar! -,ion,

3d (k d .

2

.2%
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edges are broken to le\,el k - . Since at least as many edges are broken in the entire partition iT

as are broken at the lowest level, this cannot give a partition with comm(S) < k - log1 k + 1.

.4 0

5.3 Comparison of Upper and Lower Bounds

Lnsurprisingly. the upper and lower bounds presented in Sections 5.1 and 5.2 are quite -

tight. They are within one of each other for all '.alues of k . and correspond on many.

Corollary 5.4

If h is as defined as in Section 5.1. i.e., h is the largest integer such that k / h + N (h ).

the lower bound for communication cost is achievable for all trees of height k such that

k > 3' * using the schedule presented.

Proof

The proof is algebraic. For T of height k h + N(h ) + L the schedule presented in

Section 5.1 has communication cost k - h + 1. If the lower bound is achieved, then

k - log 3k + I < k -h + I < k -log 3 k +2.
.

Thus.

log3k > h > 3 logk -1.

or k > 3 . and 3' > k. For this to be so. .4.

L 3h +1+ -h.

For h to be within the right range. L must be no more than 3" +1- 1 + h . The value computed

above lies ,well \ithin this range. Thus. for
3-_

2h + > k > 3 "'.

, . ° . , .. . .
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the Io~rbound on comnmunicaticn is achie'.eble. This is not surprising since the vchedule

presented in Section 5.1 foilo'xs the format of tile Optimal partition presented in Section5.

v ery closelv at least as far down as the sv.itch-to-Q) level, which is as far as I define it.

J.
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CHAPTER 6 n

CONCLUSIONS AND OPEN PROBLEMS

Scheduling dags on many processors to minimize completion time has long been known to

be a difficult problem. In some restricted cases, however, the problem is not so bleak. When we

try to schedule a general dag on two processors. or a tree on any number of processors, we can

do so in time polynomial in the size of the graph.

Knowing this. it is reasonable to wonder how difficult the problem becomes if we introduce

a new constraint, that of minimizing communication cost, to the problem. Although scheduling

a general dag on two processors in minimum time can be done in polynomial time. I have shown '4

that when a communication cost constraint is added, the problem again becomes NP-complete.

Afrati et al. [Afrati 1985] show that scheduling a tree on an arbitrary number of processors is

also an NP-complete problem.

The difficulty of the problem of scheduling a tree on two processors in minimum tine and

communication cost cannot be directly inferred from the previous results, and it remains open.

For complete binary and ternary trees, however. I have determined upper and lower bounds on ,

the communication cost of computation in minimum time.

First. a complete binary tree can be computed in minimum time on two processors with

communication cost 1. This is also the minimum communication that must be incurred.

Second. I show that a complete ternary tree of height k can be scheduled in minimum time with

communication cost no more than k - h + I where h is defined to be the largest integer such

t hat k ?> h + . As a lower bound. I show that communication cost greater than

k - log3k + I is required for a minimum time schedule. Comparing these bounds, we can

that a lower bound is achieavable for an infinite number of trees using the algorithm I

S%
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presen ted.

Several questions remain to be solved. primarily concerning scheduling trees.

I ) Is the problem of scheduling an in-directed tree on two processors in minimum time and

communication NP-complete?

.. 2) If so. what happens if we further restrict the tree to a binary trees? Is it easier to schedule a
-P

binary tree in minimum time and communication?

3) How difficult is it to schedule an out-directed tree on an arbitrary number of processors in

minimum time and communication cost (using Definition 2 of communication cost)?

4) Again. if the problem is NP-complete. how difficult is it to schedule an out-directed tree on

t'.o processors? I-low difficult for an out-directed binary tree?

d""

1%

,
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